Abstract

Ultra-thin wafer fabrication has become a hot spot in recent years with the growing demand for small size and high performance electronic devices. However, far less research focused on the damage behavior in ultra-thin wafer. In this work, 300 mm diameter silicon wafer was thinned to 6 µm thick by grinding plus ultra-precision dry polishing. The damage behavior before and after the dry polishing was discussed. Mechanical and surface analysis showed that the dry polishing process can help improve the strength and surface uniformity of ultra-thin wafer by removing high pressure phase and micro cracks. Series of nano beam diffraction patterns revealed the stress induced by the thinning process only existed in surface. High resolution transmission electron microscopy images analyzed by geometric phase approach indicated that surface dislocations can move across the wafer and reached bottom device layers during the dry polishing, increasing the risk of electrical deterioration. The findings are of great significance to the study on process optimization of ultra-thin wafer and provide insights into the reliability of advanced electronic packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.