Abstract

The influence of substrate and enzyme concentrations on the rate of saccharification of two defined insoluble cellulose substrates, Avicel (FMC Corp., Philadelphia, Pa.) and Solka-Floc (James River Co., Berlin, N.H.), by the cellulase enzyme system of Trichoderma viride was evaluated. In the assays, enzyme concentrations ranging from 0.004 to 0.016 IU/ml and substrate concentrations up to 10% (wt/vol) were used. Analysis by initial velocity methods found the maximum velocity of saccharification to be nearly equivalent for the two substrates and the Km for the two substrates to be of a similar magnitude, i.e., 0.20% (wt/vol) for Solka-Floc and 0.63% (wt/vol) for Avicel. Studies in which relatively high substrate concentrations (greater than 15 times the Km) were used demonstrated that the enzyme exhibited very different apparent substrate inhibition properties for the two substrates. The rate of saccharification of Avicel at relatively high substrate concentrations was up to 35% lower than the maximum rate which was observed at lower substrate concentrations. The Avicel concentration corresponding to the maximum rate of saccharification was dependent on the enzyme concentration. In contrast to the results with Avicel, the enzyme did not exhibit substrate inhibition with the Solka-Floc substrate. Potential differences in the degree of substrate inhibition with different substrates, as reported here, are particularly relevant to the experimental design of comparative studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.