Abstract

Mixed transition metal oxides have emerged as promising electrode materials for electrochemical energy storage and conversion. To optimize the functional electrode properties, synthesis approaches allowing for a systematic tailoring of the materials' composition, crystal structure and morphology are urgently needed. Here we report on the room-temperature electrodeposition of a ternary oxide based on earth-abundant metals, specifically, the defective cubic spinel ZnMnO3 . In this unprecedented approach, ZnO surfaces act as (i) electron source for the interfacial reduction of MnO4 - in aqueous solution, (ii) as substrate for epitaxial growth of the deposit and (iii) as Zn precursor for the formation of ZnMnO3 . Epitaxial growth of ZnMnO3 on the lateral facets of ZnO nanowires assures effective electronic communication between the electroactive material and the conducting scaffold and gives rise to a pronounced 2-dimensional morphology of the electrodeposit forming - after partial delamination from the substrate - twisted nanosheets. The synthesis strategy shows promise for the direct growth of different mixed transition metal oxides as electroactive phase onto conductive substrates and thus for the fabrication of binder-free nanocomposite electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.