Abstract
Substrate current injection effects are one of the major risks for smart-power IC functionality, often leading to redesigns. Smart-power ICs for motor control consist of four power transistors in H-bridge configuration and the controlling circuitry on a single chip. During switching of the power stages driving an inductive load (e.g. a motor), parasitic bipolar transistors turn on and inject electrons and holes into the substrate. This leads to a substrate potential shift with the risk of disturbing the functionality of the controlling circuitry or even triggering a latch-up. The substrate potential shift due to minority carrier injection by the lateral parasitic NPN transistor has been measured on a test chip and analyzed by 3D device simulation. The previously calibrated 3D device simulation and the measurements are in good agreement. The influence of protecting measures (substrate contacts) and the backside contact has been investigated experimentally. For the first time, the potential shift due to the parasitic substrate NPN transistor has been measured and simulated in 3D on an entire chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.