Abstract

The solid phase epitaxial growth process has been studied at 330 °C by transmission electron microscopy for Ge wafers polished at 10°–15° increments from the [001] to [011] orientations. The velocity showed a strong dependence on substrate orientation with the [001] direction displaying a velocity 16 times greater than the [111] direction. A lattice kinetic Monte Carlo model was used to simulate solid phase epitaxial growth (SPEG) rates at different orientations, and simulations compared well with experimental results. Cross sectional transmission electron microscopy and plan view transmission electron microscopy revealed stacking fault and twin defect formation in the [111] orientation where all other orientations showed only hairpin dislocations. The twin defects formed from Ge SPEG were comparatively less dense than what has previously been reported for Si, which gave rise to higher normalized velocities and a constant [111] SPEG velocity for Ge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call