Abstract
Inhibition of an RNA processing reaction after treatment with the Ca2(+)-dependent micrococcal nuclease (MN) is often used as a criterion for the presence of a required RNA or ribonucleoprotein component in the system. Following MN digestion, the nuclease is inactivated with EGTA and radiolabeled substrate is added to assay for remaining RNA processing activity. We found previously that inhibition of RNA processing by MN need not involve RNA hydrolysis: EGTA-inactivated MN can suppress RNA processing if the assay is performed in the absence of carrier RNA. We now demonstrate both by native gel electrophoresis and by nitrocellulose filter retention that EGTA-inactivated MN forms a complex with free RNA which can be dissociated by addition of synthetic polynucleotides or heparin. In the absence of Ca2+, nuclease binds to precursor tRNA with an apparent KD congruent to 1.4 x 10(-6) M, comparable to its reported affinity for DNA. In an assay for endonucleolytic tRNA maturation, inactivated MN bound to radiolabeled pre-tRNA physically blocks the sites of endonuclease cleavage and prevents tRNA processing. We call this phenomenon 'substrate masking'. Addition of excess carrier RNA competes with pre-tRNA for MN binding and restores normal processing.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have