Abstract

We theoretically study the dynamic dielectric response function of a gas of massless Fermions embedded in a coupled double quantum wire structure based on graphene. We write the dielectric function within the random phase approximation (RPA). We approach the system using the two-dimensional (2D) Dirac-like Hamiltonian in the first place, where a parameter β, accounting for the interaction between the substrate and the graphene sheet, is considered in an ad-hoc manner. We study the weak tunneling regime between the two ribbons and find the energy dispersion of the acoustical and optical plasmon modes. Our results show that different choices for the parameter β in the structure should induce spatial anisotropy effects on the plasmon modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.