Abstract
Abstract. Today EMC emissions of automotive components are often measured in anechoic chambers by an antenna at fixed position according to CISPR 25 (ALSE-method). The antenna voltage often cannot sufficiently describe the behaviour of the measured electronic components and systems. Furthermore space requirements and costs are very high for the ALSE-method. Field- and cable-scan methods combined with near-field to far-field transformation techniques might be a good alternative. Residual reflections from the walls, the metallic floor, the measuring table, interaction of the antenna with the environment, and other factors affect the measurements. Thus, models which only regard the current distribution for near- and far field calculation cannot produce results equal to a chamber measurement. In this paper methods for computing transfer functions for the substitution of EMC antenna measurements with field- and cable scans in a specified calibration area are introduced. To consider influences of the environment, the environment is characterized in a first step and included with transfer functions in the calculation process for the equivalent ALSE-field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.