Abstract

Identification of a novel class of anti-Burkholderia compounds is key in addressing antimicrobial resistance to current therapies as well as naturally occurring resistance. The FabI enoyl-ACP reductase in Burkholderia is an underexploited target that presents an opportunity for development of a new class of inhibitors. A library of substituted diphenyl ethers was used to identify FabI1-specific inhibitors for assessment in Burkholderia pseudomallei ex vivo and murine efficacy models. Active FabI1 inhibitors were identified in a two-stage format consisting of percent inhibition screening and MIC determination by the broth microdilution method. Each compound was evaluated against the B. pseudomallei 1026b (efflux-proficient) and Bp400 (efflux-compromised) strains. In vitro screening identified candidate substituted diphenyl ethers that exhibited MICs of less than 1 μg/ml, and enzyme kinetic assays were used to assess potency and specificity against the FabI1 enzyme. These compounds demonstrated activity in a Burkholderia ex vivo efficacy model, and two demonstrated efficacy in an acute B. pseudomallei mouse infection model. This work establishes substituted diphenyl ethers as a suitable platform for development of novel anti-Burkholderia compounds that can be used for treatment of melioidosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call