Abstract

2-Deoxy-2,2-difluoroglycosides are a new class of mechanism-based inhibitors of alpha-glycosidases, which function via the accumulation of a stable difluoroglycosyl-enzyme intermediate. Two members of this new class of inhibitor have been synthesized and kinetic studies performed with their target glycosidases. Thus 2,4,6-trinitrophenyl 2-deoxy-2,2-difluoro-alpha-glucoside is shown to inactivate yeast alpha-glucosidase with a second order rate constant of ki/Ki = 0.25 min-1 mM-1. The equivalent difluoromaltoside inactivates human pancreatic alpha-amylase with ki/Ki = 0.0073 min-1 mM-1. Competitive inhibitors protect the enzyme against inactivation in each case, showing reaction to occur at the active site. A burst of release of one equivalent of trinitrophenolate observed upon inactivation of human pancreatic alpha-amylase proves the required 1:1 stoichiometry. These are the first mechanism-based inhibitors of this class to be described, and the first mechanism-based inhibitors of any sort for the medically important alpha-amylase. In addition to having potential as therapeutics, compounds of this class should prove useful in subsequent structural and mechanistic studies of these enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.