Abstract
Genome integrity is maintained via removal (repair) of DNA lesions and an increased load of such DNA damage has been linked to numerous pathological conditions, including carcinogenesis and ageing. 8-Oxo-7,8-dihydroguanine is one of the most critical lesions of this type. The free 8-oxo-7,8-dihydroguanine produced by the action of a specific DNA glycosylase is a potential source of this compound in urine. To date, there has been no direct, experimental evidence demonstrating that urinary 8-oxo-7,8-dihydroguanine is produced by the base excision repair pathway. For clarification of this issue, we applied a recently developed methodology which involved high performance liquid chromatography pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection to compare the urinary excretion rate of 8-oxo-7,8-dihydroguanine in wild type and OGG1 glycosylase knock out mice. Our study revealed a 26% reduction in urinary level of 8-oxo-7,8-dihydroguanine in OGG1 deficient mice in comparison with the wild type strain. This clearly indicates that the mouse OGG1 glycosylase contributes significantly to the generation of urinary 8-oxo-7,8-dihydroguanine. Therefore, urinary measurements of 8-oxo-7,8-dihydroguanine may be attributed to DNA damage and repair, which in turn suggests that they may be useful in studying associations between DNA repair and disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have