Abstract
Although clinical spinal cord injury (SCI) occurs within a closed environment, most experimental models of SCI create an open injury. Such an open environment precludes the measurement of intrathecal pressure (ITP), whose increase after SCI has been linked to the development of greater tissue damage and functional deficits. Raised ITP may be potentiated by edema, which we have recently shown to be associated with substance P (SP) induced neurogenic inflammation in both traumatic brain injury and stroke. The present study investigates whether SP plays a similar role as a mediator of neurogenic inflammation after SCI. A closed balloon compression injury was induced at T10 in New Zealand white rabbits. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, edema, ITP, histological outcome, and functional outcome from 5 h to 2 weeks post-SCI. The balloon compression model produced significant increases in BSCB permeability, edema, and ITP along with significant functional deficits that persisted for 2 weeks. Histological assessment demonstrated decreased SP immunoreactivity in the injured spinal cord while NK1 receptor immunoreactivity initially increased before returning to sham levels. In addition, aquaporin 4 immunoreactivity increased early post-SCI, implicating this water channel in the development of edema after SCI. The changes described in the present study support a role for SP as a mediator of neurogenic inflammation after SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.