Abstract

Hidden Markov models (HMMs) are probabilistic functions of finite Markov chains, or, put in other words, state space models with finite state space. In this paper, we examine subspace estimation methods for HMMs whose output lies a finite set as well. In particular, we study the geometric structure arising from the nonminimality of the linear state space representation of HMMs, and consistency of a subspace algorithm arising from a certain factorization of the singular value decomposition of the estimated linear prediction matrix. For this algorithm, we show that the estimates of the transition and emission probability matrices are consistent up to a similarity transformation, and that the m-step linear predictor computed from the estimated system matrices is consistent, i.e., converges to the true optimal linear m-step predictor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.