Abstract

The topic of this paper is linear optimal prediction of hidden Markov models (HMMs) and innovations representations of HMMs. Our interest in these topics primarily arise from subspace estimation methods, which are intrinsically linked to such representations. For HMMs, derivation of innovations representations is complicated by non-minimality of the corresponding state space representations, and requires the solution of algebraic Riccati equations under non-minimality assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.