Abstract
In the context of China’s new power system, various regions have implemented policies mandating the integration of new energy sources with energy storage, while also introducing subsidies to alleviate project cost pressures. Currently, there is a lack of subsidy analysis for photovoltaic energy storage integration projects. In order to systematically assess the economic viability of photovoltaic energy storage integration projects after considering energy storage subsidies, this paper reviews relevant policies in the Chinese photovoltaic energy storage market. It analyzes the cost and revenue composition of photovoltaic energy storage integration projects, and constructs a system dynamics model for the levelized cost of electricity (LCOE) of such projects. Taking a specific photovoltaic energy storage project as an example, this paper measures the levelized cost of electricity and the investment return rate under different energy storage scenarios. Combining energy storage allocation ratios and internal rate of return indicators, this paper analyzes the net present value of photovoltaic energy storage integration projects under different subsidy standards. The results indicate that, while the current energy storage subsidy policies positively stimulate photovoltaic energy storage integration projects, they exhibit a limited capacity to cover energy storage investment costs, thereby failing to incentivize capital market participation in the construction of such projects. Rational allocation of energy storage capacity and optimization of corresponding subsidy policies are crucial prerequisites for enhancing the economic viability and widespread adoption of photovoltaic energy storage integration projects. This study not only aids in investment decision making for photovoltaic power stations but also contributes to the formulation of energy storage subsidy policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.