Abstract

AbstractPoint-based data-acquisition technology in traditional survey engineering does not provide complete data about mining-induced subsidence basins. To overcome these shortcomings, this research applied light detection and ranging (LIDAR) data, obtained with a terrestrial laser scanner (TLS) for monitoring the surface deformation of mining areas, to acquire full data about mining-induced subsidence basins. First, to improve the organization efficiency of LIDAR data, the decimal Morton code–based indexing method was proposed for discrete-grid indexing to organize LIDAR data according to original point coordinates, to avoid the generation of grids without data, and to build a topological relationship among scattered points. Thus, this approach enabled highly efficient access of LIDAR data and restoration of coordinates for each point. In the end, the processed data were applied in engineering practice. The subsidence curves of two sections of the subsidence basin, in both strike and dip directions measu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call