Abstract
AbstractPentad (5-day averaged) forecast skill over the Arctic region in boreal winter is evaluated for the subseasonal to seasonal prediction (S2S) systems from three operational centers: the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction (NCEP), and Environment and Climate Change Canada (ECCC). The results indicate that for a lead time longer than about 10 days the forecast skill of 2-m air temperature and 500-hPa geopotential height in the Arctic area is low compared to the tropical and midlatitude regions. The three S2S systems have comparable forecast skill in the northern polar region. Relatively high skill is observed in the Arctic sector north of the Bering Strait in pentads 4–6. Possible sources of S2S predictability in the polar region are explored. The polar forecast skill is found to be dependent on the phase of the Arctic Oscillation (AO) in the initial condition; that is, forecasts initialized with the negative AO are more skillful than those starting from the positive AO. This is likely due to the influence of the stratospheric polar vortex. The tropical MJO is found to also influence the prediction skill in the polar region. Forecasts starting from MJO phases 6–7, which correspond to suppressed convection in the equatorial eastern Indian Ocean and enhanced convection in the tropical western Pacific, tend to be more skillful than those initialized from other MJO phases. To improve the polar prediction on the subseasonal time scale, it is important to have a well-represented stratosphere and tropical MJO and their associated teleconnections in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.