Abstract

Recent research on volcanic-hosted massive sulfide (VMS) deposits indicates that syngenetic subsea-floor replacement ores form an important component of many deposits. In the context of VMS deposits, subsea-floor replacement can be defined as the syn-volcanic formation of sulfide minerals within pre-existing volcanic or sedimentary deposits by infiltration and precipitation in open spaces (fractures, inter- and intra-granular porosity) as well as replacement of solid materials. There are five criteria for distinguishing subsea-floor replacement in massive sulfide deposits: (1) mineralized intervals are enclosed within rapidly emplaced volcanic or sedimentary facies (lavas, intrusions, subaqueous mass-flow deposits, pyroclastic fallout); (2) relics of the host facies occur within the mineral deposit; (3) replacement fronts occur between the mineral deposit and the host lithofacies; (4) the mineral deposit is discordant to bedding; and (5) strong hydrothermal alteration continues into the hanging wall without an abrupt break in intensity. Criteria 1–3 are diagnostic of replacement, whereas criteria 4 and 5 may suggest replacement but are not alone diagnostic. Because clastic sulfide ores contain accessory rock fragments collected by the parent sediment gravity flow(s) during transport, criteria 2 can only be applied to massive, semi-massive, disseminated or vein style deposits, and not clastic ores. The spectrum of VMS deposit types includes deposits that have accumulated largely subsea-floor, and others in which sedimentation and volcanism were synchronous with hydrothermal activity, and precipitation of sulfides occurred at and below the sea floor over the life of the hydrothermal system. Deposits that formed largely subsea-floor are mainly hosted by syn-eruptive or post-eruptive volcaniclastic facies (gravity flow deposits, water-settled fall, autoclastic breccia). However, some subsea-floor replacement VMS deposits are hosted by lavas and syn-volcanic intrusions (sills, domes, cryptodomes). Burial of sea-floor massive sulfide by lavas or sediment gravity flow deposits can interrupt sea-floor mineralization and promote subsea-floor replacement and zone-refining. The distance below the sea floor at which infiltration and replacement took place is rarely well constrained, with published estimates ranging from less than 1 to more than 500 m, but mainly in the range 10–200 m. The upper few tens to hundreds of metres in the volcano-sedimentary pile are the favoured position for replacement, as clastic facies are wet, porous and poorly consolidated in this zone, and at greater depths become progressively more compacted, dewatered, altered, and less amenable to large scale infiltration and replacement by hydrothermal fluids. Furthermore, sustained mixing between the upwelling hydrothermal fluid and cold seawater is regarded as a major cause of sulfide precipitation in VMS systems, and this mixing process generally becomes less effective with increasing depth in the volcanic pile. The relative importance of subsea-floor replacement in VMS systems is related principally to four factors: the permeability and porosity patterns of host lithofacies, sedimentation rate, the relative ease of replacement of host lithofacies (especially glassy materials) and early formed alteration minerals during hydrothermal attack, and physiochemical characteristics of the hydrothermal fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call