Abstract
Extreme Learning Machine (ELM) is becoming a popular learning algorithm due to its diverse applications, including Human Activity Recognition (HAR). In ELM, the hidden node parameters are generated at random, and the output weights are computed analytically. However, even with a large number of hidden nodes, feature learning using ELM may not be efficient for natural signals due to its shallow architecture. Due to noisy signals of the smartphone sensors and high dimensional data, substantial feature engineering is required to obtain discriminant features and address the “curse-of-dimensionality”. In traditional ML approaches, dimensionality reduction and classification are two separate and independent tasks, increasing the system’s computational complexity. This research proposes a new ELM-based ensemble learning framework for human activity recognition to overcome this problem. The proposed architecture consists of two key parts: (1) Self-taught dimensionality reduction followed by classification. (2) they are bridged by “Subsampled Randomized Hadamard Transformation” (SRHT). Two different HAR datasets are used to establish the feasibility of the proposed framework. The experimental results clearly demonstrate the superiority of our method over the current state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.