Abstract

Human activity recognition has a significant impact on people’s daily lives. The need to infer human activities is prominent in many human-centric applications, such as healthcare and individual assistance. In this article, we introduce a noninvasive human activity recognition system that utilizes footstep-induced vibration and sound in an outdoor environment with the aim of achieving improved performance over a single source of information. We employ 1-D convolutional neural networks (1-D CNNs) for automated feature extraction, fusion, and activity recognition on a nine-class classification problem. The proposed framework reports an average F1 score of 92%, which corresponds to a 5.74% improvement over the best-performing state-of-the-art. Confusion matrix-based analysis demonstrates that audio-seismic fusion not only reduces misclassifications, but also reduces the impact of background noise on model performance. In addition, we demonstrate that a model trained on a balanced dataset has a higher F1 score than one trained on an imbalanced dataset. Activity-wise performance is reported to show the efficacy of the proposed fusion-based framework. We also contribute an audio-seismic dataset for human activity recognition in an outdoor environment. The dataset is collected in a variety of challenging environments, such as varying grass length, soil moisture content, and the passing of unwanted vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.