Abstract

This paper investigates a detection scheme without channel state information for wireless optical communication systems. Employing conventional on-off keying signals, we supposed that conditional probability density function P(r|0) is much bigger than P(r|1) when r<0. Under this assumption, the suboptimal maximum likelihood scheme is obtained by utilizing the probability density function without channel information. Theoretical analysis shows the performance of the proposed scheme is close to the maximum likelihood symbol-by-symbol detection. Compared with the maximum likelihood symbol by symbol detection, Monte Carlo simulations show that the performance of the proposed scheme is about 0.62 dB loss for a gamma-gamma channel with a Rytov variance of 1 at the signal-to-noise ratio of 2 dB, but the efficient algorithm makes the real-time implementation of detection based on maximum likelihood feasible. Besides, the experiment is set up under 2 Gbps, and the experimental results match well with that of the theory and simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call