Abstract

Compressed ultrafast photography (CUP) is a high-speed imaging technique with a frame rate of up to ten trillion frames per second (fps) and a sequence depth of hundreds of frames. This technique is a powerful tool for investigating ultrafast processes. However, since the reconstruction process is an ill-posed problem, the image reconstruction will be more difficult with the increase of the number of reconstruction frames and the number of pixels of each reconstruction frame. Recently, various deep-learning-based regularization terms have been used to improve the reconstruction quality of CUP, but most of them require extensive training and are not generalizable. In this paper, we propose a reconstruction algorithm for CUP based on the manifold learning and the alternating direction method of multipliers framework (ML-ADMM), which is an unsupervised learning algorithm. This algorithm improves the reconstruction stability and quality by initializing the iterative process with manifold modeling in embedded space (MMES) and processing the image obtained from each ADMM iterative with a nonlinear modeling based on manifold learning. The numerical simulation and experiment results indicate that most of the spatial details can be recovered and local noise can be eliminated. In addition, a high-spatiotemporal-resolution video sequence can be acquired. Therefore, this method can be applied for CUP with ultrafast imaging applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.