Abstract

Abstract In this paper a repeatable inverse kinematic task was solved via an approximation of a pseudo-inverse Jacobian matrix of a robot manipulator. An entry configuration to the task was optimized and a task-dependent definition of an approximation region, in a configuration space, was utilized. As a side effect, a relationship between manipulability and optimally augmented forward kinematics was established and independence of approximation task solutions on rotations in augmented components of kinematics was proved. A simulation study was performed on planar pendula manipulators. It was demonstrated that selection of an initial configuration to the repeatable inverse kinematic task heavily impacts solvability of the task and its quality. Some remarks on a formulation of the approximation task and its numerical aspects were also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.