Abstract
Inverse kinematics of robot manipulator is to determine the joint variables for a given Cartesian position and orientation of an end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Although artificial neural network (ANN) can be gainfully used to yield the desired results but the gradient descent learning algorithm does not have ability to search for global optimum and it gives slow convergence rate. This paper proposes structured ANN with hybridization of Gravitational Search Algorithm to solve inverse kinematics of 6R PUMA robot manipulator. The ANN model used is multi-layered perceptron neural network (MLPNN) with back-propagation (BP) algorithm which is compared with hybrid multi layered perceptron gravitational search algorithm (MLPGSA). An attempt has been made to find the best ANN configuration for the problem. It has been observed that MLPGSA gives faster convergence rate and improves the problem of trapping in local minima. It is found that MLPGSA gives better result and minimum error as compared to MLPBP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.