Abstract

Skull and head muscles of Heptranchias perlo were studied. Its distinctive features include the suboccipital muscles, described for the first time, the absence of the palatoquadrate symphysis, a longitudinally extended mouth, and teeth unsuited for dissecting prey in typical method of modern sharks, which is cutting motions powered by head shaking from side to side. The palatoquadrate cartilages of H. perlo and closely related Hexanchidae articulate with the neurocranium via orbital and postorbital articulations, which together allow for lateral expansion of the jaws, but restrict retraction and protraction. We interpret these features as an adaptation to a different method of prey dissection, that is, ripping in a backward pull. It employs the specific postorbital articulation together with the suboccipital muscles as force-transmitting devices, and is powered by swimming muscles which produce a rearward thrust of the tail. During this type of dissection, the anterior part of the vertebral column should experience a tensile stress which explains the replacement of rigid vertebral bodies by a collagenous sheath around the notochord in H. perlo. The backward-ripping dissection could have been common among ancient Elasmobranchii based on the similarly developed postorbital articulation, a longitudinally extended mouth, and the absence of the palatoquadrate symphysis. A biomechanical comparison with the extinct Pucapampella indicates that ancient elasmobranchs could be also specialized in the backward-ripping prey dissection, but their mechanism was different from that inferred for H. perlo. We suggest that in the early evolution of sharks this mechanism was replaced by head-shaking dissection and then later was restored in H. perlo on a new morphological basis. A new position of the postorbital articulation below the vertebral axis is fraught with the braincase elevation when backward ripping the prey, and as a counter-mean, requires formation of suboccipital portions of the axial musculature unknown in other sharks. Homology and origin of these portions is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call