Abstract
We study distributed equi-join computation in the presence of join-attribute skew, which causes load imbalance. Skew can be addressed by more fine-grained partitioning, at the cost of input duplication. For random load assignment, e.g., using a hash function, fine-grained partitioning creates a tradeoff between load expectation and variance. We show that minimizing load variance subject to a constraint on expectation is a monotone submodular maximization problem with Knapsack constraints, hence admitting provably near-optimal greedy solutions. In contrast to previous work on formal optimality guarantees, we can prove this result also for self-joins and more general load functions defined as weighted sum of input and output. We further demonstrate through experiments that this theoretical result leads to an effective algorithm for the problem of minimizing running time, even when load is assigned deterministically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. ACM-SIGMOD International Conference on Management of Data
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.