Abstract
Many modern data science applications build on data lakes, schema-agnostic repositories of data files and data products that offer limited organization and management capabilities. There is a need to build data lake search capabilities into data science environments, so scientists and analysts can find tables, schemas, workflows, and datasets useful to their task at hand. We develop search and management solutions for the Jupyter Notebook data science platform, to enable scientists to augment training data, find potential features to extract, clean data, and find joinable or linkable tables. Our core methods also generalize to other settings where computational tasks involve execution of programs or scripts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. ACM-SIGMOD International Conference on Management of Data
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.