Abstract
Abstract In the early stages of star formation, a protostar is deeply embedded in an optically thick envelope such that it is not directly observable. Variations in the protostellar accretion rate, however, will cause luminosity changes that are reprocessed by the surrounding envelope and are observable at submillimeter wavelengths. We searched for submillimeter flux variability toward 12 Planck Galactic Cold Clumps detected by the James Clerk Maxwell Telescope (JCMT)-SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) survey. These observations were conducted at 850 using the JCMT/SCUBA-2. Each field was observed three times over about 14 months between 2016 April and 2017 June. We applied a relative flux calibration and achieved a calibration uncertainty of ∼3.6% on average. We identified 136 clumps across 12 fields and detected four sources with flux variations of ∼30%. For three of these sources, the variations appear to be primarily due to large-scale contamination, leaving one plausible candidate. The flux change of the candidate may be associated with low- or intermediate-mass star formation assuming a distance of 1.5 kpc, although we cannot completely rule out the possibility that it is a random deviation. Further studies with dedicated monitoring would provide a better understanding of the detailed relationship between submillimeter flux and accretion rate variabilities while enhancing the search for variability in star-forming clumps farther away than the Gould Belt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.