Abstract

Abstract The calcite shells, or tests, of foraminifera provide a window into Earth history because they are archived in most marine sediments and contain useful geochemical proxies for paleoceanography. Previous observations of diurnal heterogeneity in proxies like Mg/Ca demonstrate a complex relationship between environmental conditions and test composition. The causes for this diurnal banding and the potential impact for proxy interpretation in systems other than Mg/Ca have yet to be determined. Recently, Mg and Na in shells of the planktic foraminifer species Orbulina universa have been observed to be high at the location of the primary organic sheet (POS), i.e. the organic template upon which the calcite test is formed. Here we use time-of-flight secondary ion mass spectrometry (ToF-SIMS), a chemical and isotope mapping technique with a spatial resolution of 300 nm, to show that Na banding is a consistent feature in the tests of 45 individual cultured O. universa. This banding occurs in two distinct forms: (1) sharp Na bands associated with organic sheets that are embedded in the calcite test after chamber formation; and (2) regular, thicker, but lower-amplitude Na bands that are found throughout the test. We use the pattern of the first type of banding to indicate the extent and sequence of calcite growth during chamber formation. Specifically, we show that new chamber formation involves growth over the previous chamber in Orbulina bilobata, a morphotype of O. universa that develops a second partial spherical chamber attached to the primary sphere. This is consistent with a bilamellar model of foraminiferal growth. However, a SIMS mapping survey of the morphologically more complex Globigerina bulloides and Neogloboquadrina dutertrei suggests that the pattern of growth during chamber formation and the prevalence of different types of Na bands may be species-specific. The wide, repeating Na bands that occur throughout the test of O. universa generally occur in an inverse pattern with respect to Mg banding for the first few days of the foraminifer's life, but this pattern changes as the organism ages. We use the magnitude, timing, and coherency between Na and Mg bands to put constraints on various proposed mechanisms for banding, including antiport Mg2+-2Na+ exchange and kinetic growth rate effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.