Abstract

1. Manganese(II) buffers were set up with inorganic triphosphate, trimethylenediaminetetraacetate and tetramethylenediaminetetraacetate to study the Mn dependence of beta 1,4-galactosyltransferase (lactose synthetase) in preparations of rat mammary gland. 2. In intact particulate preparations, treated with the calcium ionophore A23187, lactose synthesis was abolished by chelators and restored by bivalent transition metal ions in a manner characteristic of activation site I of the pure enzyme. Ni(II) also activated, as did Mg at high concentration. 3. Only Mn(II) could restore endogenous rates, giving an apparent Km of 0.1-0.2 microM, and eliciting about 70% full activity without addition of a site II activator. 4. In purified Golgi membrane vesicles, Mn gave an apparent Km of 0.4 microM. This increased sharply to about 10 microM on permeabilization with filipin, lysis with detergents, solubilization with Triton X-100, or in the pure enzyme. Preparations of chemically undamaged Golgi vesicles, known to include a proportion of the enzyme on exposed membranes, exhibited both low-Km and high-Km components. 5. The response of particulate galactosyltransferase to apparently physiological concentrations of free Mn(II) ion is interpreted as either due to a sensitizing factor within the Golgi lumen, or to the accumulation of Mn at elevated concentrations. Alternatively, the high Km of the soluble enzyme may reflect proteolytic damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.