Abstract
In the marine environment, dynamic physical processes shape biological productivity and predator-prey interactions across multiple scales. Identifying pathways of physical-biological coupling is fundamental to understand the functioning of marine ecosystems yet it is challenging because the interactions are difficult to measure. We examined submesoscale (less than 100 km) surface current features using remote sensing techniques alongside ship-based surveys of krill and baleen whale distributions in the California Current System. We found that aggregative surface current features, represented by Lagrangian coherent structures (LCS) integrated over temporal scales between 2 and 10 days, were associated with increased (a) krill density (up to 2.6 times more dense), (b) baleen whale presence (up to 8.3 times more likely) and (c) subsurface seawater density (at depths up to 10 m). The link between physical oceanography, krill density and krill-predator distributions suggests that LCS are important features that drive the flux of energy and nutrients across trophic levels. Our results may help inform dynamic management strategies aimed at reducing large whales ship strikes and help assess the potential impacts of environmental change on this critical ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.