Abstract

Laser triggered and photothermally induced vapor bubbles have emerged as promising approaches to facilitate optomechanical energy conversion for numerous applications in microfluidics and nanofluidics. Here, we report an observation of spontaneously triggered periodic nucleation of plasmonic vapor bubbles near a rigid sidewall with readily tuned nucleation frequency from 0.8kHz to over 200kHz. The detailed collapsing process of the vapor bubbles was experimentally and numerically investigated. We find that the lateral migration of residual bubbles toward the sidewall refreshes the laser spot area, terminates the subsequent steady bubble growth, and leads to the repeatable bubble nucleation. A mathematic model regarding the Kelvin impulses was derived. It shows that the competition between the rigid boundary induced Bjerknes force and laser irradiation caused thermal Marangoni force on collapsing bubbles governs the process. The model also leads to a criterion of γζ<0.34 for repeatable bubble nucleation, where γ is the normalized distance and ζ thermal Marangoni coefficient. This study demonstrates nucleation of violent vapor bubbles at extreme high frequencies, providing an approach to remotely realize strong localized flows in microfluidics and nanofluidics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.