Abstract

Two large submarine slides, The Storegga and the Tr˦nadjupet Slides, occurred on the Mid-Norwegian margin during the Holocene. The Ormen Lange gas field is located within the scar of the Storegga Slide. This gigantic submarine slide occurred about 8200 years ago, and caused large waves (tsunamis) that reached the coasts of Norway, Scotland, Shetland and the Faroc Islands. The objectives of this chapter are to present the challenges and the slide risk assessment related to the development the Ormen Lange gas field. The risk evaluation is based on a qualitative approach for large natural slides, and a quantitative approach for new small slides in the vicinity of the development area. The work programme includes extensive, regional multi-disciplinary studies, carried out jointly by academia, industry and research institutions. The database includes an extensive grid of seismic data, detailed sea-floor morphology and sediment properties from a number of ‘geoborings’ (combined geological and geotechnical borings to sub-bottom depths of 200–400 m). Stability of the steepest slopes in the vicinity of the development area is calculated. Effects of excess pore pressures, earthquakes, reservoir compaction during depletion and underground gas blowouts into possible permeable layers have all been included in the stability calculations. To understand the recent slide history in the area and to find the frequency of the sliding, extensive sea-floor mapping and coring to date slide events are also included. A geological model for the Plio-Pleistocene of the area explains the large-scale sliding as a response to climatic variability. Over long periods, marine deposition prevailed with focused deposition due to current effects in the locations of the Storegga and the Tr˦nadjupet Slides. During short intervals of peak glacial conditions, till and glacial debris flow sediments were deposited at high rates directly on the continental slope. This created excess pore pressures in the thick marinc deposits. The most likely triggering mechanism of the slides is a strong earthquake following the onshore uplift after the glaciation. This explains why the slides take place after a glacial period. Since all the soft unstable clays were removed from the Storegga Margin during the last slide, it is concluded that a new cycle with sedimentation of soft clays and deposition of glacial sediments in the upper slopes are needed, to create a new unstable situation in the Storegga area. At present, the slopes in the Ormen Lange area have high safety factors, and the likelihood of new slides, both local and regional, is considered very low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call