Abstract

We derive and solve renormalization group equations that allow for the resummation of subleading power rapidity logarithms. Our equations involve operator mixing into a new class of operators, which we term the “rapidity identity operators”, that will generically appear at subleading power in problems involving both rapidity and virtuality scales. To illustrate our formalism, we analytically solve these equations to resum the power suppressed logarithms appearing in the back-to-back (double light cone) limit of the Energy-Energy Correlator (EEC) in mathcal{N} = 4 super-Yang-Mills. These logarithms can also be extracted to mathcal{O}left({alpha}_s^3right) from a recent perturbative calculation, and we find perfect agreement to this order. Instead of the standard Sudakov exponential, our resummed result for the subleading power logarithms is expressed in terms of Dawson’s integral, with an argument related to the cusp anomalous dimension. We call this functional form “Dawson’s Sudakov”. Our formalism is widely applicable for the resummation of subleading power rapidity logarithms in other more phenomenologically relevant observables, such as the EEC in QCD, the pT spectrum for color singlet boson production at hadron colliders, and the resummation of power suppressed logarithms in the Regge limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.