Abstract

We derive and analytically solve renormalization group (RG) equations of gauge invariant non-local Wilson line operators which resum logarithms for event shape observables τ at subleading power in the τ ≪ 1 expansion. These equations involve a class of universal jet and soft functions arising through operator mixing, which we call θ-jet and θ-soft functions. An illustrative example involving these operators is introduced which captures the generic features of subleading power resummation, allowing us to derive the structure of the RG to all orders in αs, and provide field theory definitions of all ingredients. As a simple application, we use this to obtain an analytic leading logarithmic result for the subleading power resummed thrust spectrum for H → gg in pure glue QCD. This resummation determines the nature of the double logarithmic series at subleading power, which we find is still governed by the cusp anomalous dimension. We check our result by performing an analytic calculation up to mathcal{O}left({alpha}_s^3right) . Consistency of the subleading power RG relates subleading power anomalous dimensions, constrains the form of the θ-soft and θ-jet functions, and implies an exponentiation of higher order loop corrections in the subleading power collinear limit. Our results provide a path for carrying out systematic resummation at subleading power for collider observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.