Abstract

In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat). Using the subject's subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10), primary somatosensory cortex (BA1), premotor cortex (BA 6), precuneus (BA 7), temporopolar cortex (BA 38), inferior parietal lobe (BA 39), hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32) = 0.54, p = 0.0013) and dorsal BA10 correlating exclusively with somatosensory sensation (r(32) = 0.46, p = 0.007). All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention.

Highlights

  • Before attempting to explain how and why neurophysiological processes relate to consciousness traits, it seems necessary to find consistent correlations between subjective phenomenological features and brain activity patterns [1]

  • After verifying in 34 healthy volunteers that sustained attention directed to the spontaneous sensations of either thumb in the absence of any external stimuli effectively activates brain somatosensory areas, the present results show that corresponding subjective somatosensory experiences correlate with left dorsal frontopolar prefrontal cortex, right primary somatosensory cortex, left temporopolar cortex, right inferior parietal lobe, right hippocampus, right insula and right amygdala activations

  • The main hypothesis of this work was largely corroborated with the additional finding that the left frontopolar prefrontal cortex (BA 10) and the temporopolar cortex (BA 38), in conjunction with primary somatosensory (BA 2), cortex, premotor cortex (BA 6), precuneus (BA 7), inferior parietal lobe (BA 39), hippocampus, insula and amygdala are involved in general spontaneous subjective somatosensory experiences

Read more

Summary

Introduction

Before attempting to explain how and why neurophysiological processes relate to consciousness traits, it seems necessary to find consistent correlations between subjective phenomenological features and brain activity patterns [1]. It is possible to correlate introspective evaluations of sensory aspects of subjective experience with imaged local brain activations [2]. The subjects received a previously agreed one-word instruction (‘‘attention’’ or ‘‘rest’’) via MRI compatible audio equipment (NordicNeuroLab, Bergen, Norway) directing them to focus their attention on the target thumb, or to rest. Subjects had their eyes closed during the whole experiment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call