Abstract

Whether innocuous heat (IH)-exclusive brain regions exist and whether patterns of cerebral responses to IH and noxious heat (NH) stimulations are similar remain elusive. We hypothesized that distinct and shared cerebral networks were evoked by each type of stimulus. Twelve normal subjects participated in a functional MRI study with rapidly ramped IH (38 degrees C) and NH (44 degrees C) applied to the foot. Group activation maps demonstrated three patterns of cerebral activation: (1) IH-responsive only in the inferior parietal lobule (IPL); (2) NH-responsive only in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2), posterior insular cortex (IC), and premotor area (PMA); and (3) both IH- and NH-responsive in the middle frontal gyrus, inferior frontal gyrus (IFG), anterior IC, cerebellum, superior frontal gyrus, supplementary motor area, thalamus, anterior cingulate cortex (ACC), lentiform nucleus (LN), and midbrain. According to the temporal analysis of regions of interest, the IPL exclusively responded to IH, and the S2, posterior IC, and PMA were exclusively activated by NH throughout the entire period of stimulation. The IFG, thalamus, ACC, and LN responded differently during different phases of IH versus NH stimulation, and the NH-responsive-only S1 responded transiently during the early phase of IH stimulation. BOLD signals in bilateral IPLs were specifically correlated with the ratings of IH sensation, while responses in the contralateral S1 and S2 were correlated with pain intensity. These results suggest that distinct and shared spatial and temporal patterns of cerebral networks are responsible for the perception of IH and NH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call