Abstract
The risk of hip fracture of a patient due to a fall can be described from a mechanical perspective as the capacity of the femur to withstand the force that it experiences in the event of a fall. So far, impact forces acting on the lateral aspect of the pelvic region and femur strength have been investigated separately. This study used inertia-driven cadaveric impact experiments that mimic falls to the side from standing in order to evaluate the subject-specific force applied to the hip during impact and the fracture outcome in the same experimental model. Eleven fresh-frozen pelvis-femur constructs (6 female, 5 male, age = 77 years (SD = 13 years), BMI = 22.8 kg/m2 (SD = 7.8 kg/m2), total hip aBMD = 0.734 g/cm2 (SD = 0.149 g/cm2)), were embedded into soft tissue surrogate material that matched subject-specific mass and body shape. The specimens were attached to metallic lower-limb constructions with subject-specific masses and subjected to an inverted pendulum motion. Impact forces were recorded with a 6-axis force plate at 10,000 Hz and three dimensional deflections in the pelvic region were tracked with two high-speed cameras at 5000 Hz. Of the 11 specimens, 5 femur fractures and 3 pelvis fractures were observed. Three specimens did not fracture. aBMD alone did not reliably separate femur fractures from non-fractures. However, a mechanical risk ratio, which was calculated as the impact force divided by aBMD, classified specimens reliably into femur fractures and non-fractures. Single degree of freedom models, based on specimen kinetics, were able to predict subject-specific peak impact forces (RMSE = 2.55% for non-fractures). This study provides direct evidence relating subject-specific impact forces and subject-specific strength estimates and improves the assessment of the mechanical risk of hip fracture for a specific femur/pelvis combination in a sideways fall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.