Abstract

We study the response of a model neuron, driven simultaneously by noise and at least two weak periodic signals. We focus on signals with frequencies components kf(0),(k+1)f(0),...(k+n)f(0) with k>1. The neuron's output is a sequence of pulses spaced at random interpulse intervals. We find an optimum input noise intensity for which the output pulses are spaced approximately 1/f(0), i.e., there is a stochastic resonance (SR) at a frequency missing in the input. Even higher noise intensities uncover additional, but weaker, resonances at frequencies present in the input. This is a different form of SR whereby the most robust resonance is the one enhancing a frequency, which is absent in the input, and which is not possible to recover via any linear processing. This can be important in understanding sensory systems including the neuronal mechanism for perception of complex tones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.