Abstract
AbstractHeterogeneity exists in populations, and people may benefit differently from the same treatments or services. Correctly identifying subgroups corresponding to outcomes such as treatment response plays an important role in data‐based decision making. As few discussions exist on subgroup analysis with measurement error, we propose a new estimation method to consider these two components simultaneously under the linear regression model. First, we develop an objective function based on unbiased estimating equations with two repeated measurements and a concave penalty on pairwise differences between coefficients. The proposed method can identify subgroups and estimate coefficients simultaneously when considering measurement error. Second, we derive an algorithm based on the alternating direction method of multipliers algorithm and demonstrate its convergence. Third, we prove that the proposed estimators are consistent and asymptotically normal. The performance and asymptotic properties of the proposed method are evaluated through simulation studies. Finally, we apply our method to data from the Lifestyle Education for Activity and Nutrition study and identify two subgroups, of which one has a significant treatment effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.