Abstract

AbstractWe propose a parametric kernel mode–based regression built on the mode value, which provides robust and efficient estimators for datasets containing outliers or heavy‐tailed distributions. To address the challenges posed by massive datasets, we integrate this regression method with distributed statistical learning techniques, which greatly reduces the required amount of primary memory and simultaneously accommodates heterogeneity in the estimation process. By approximating the local kernel objective function with a least squares format, we are able to preserve compact statistics for each worker machine, facilitating the reconstruction of estimates for the entire dataset with minimal asymptotic approximation error. Additionally, we explore shrinkage estimation through local quadratic approximation, showcasing that the resulting estimator possesses the oracle property through an adaptive LASSO approach. The finite‐sample performance of the developed method is illustrated using simulations and real data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.