Abstract
This investigation questions the importance of inverse interscale energy fluxes, the so-called energy backscatter, for the modelling of the energy cascade in large-eddy simulations (LES) of turbulent flows. The invariance of the filtered Navier–Stokes equations to divergence-preserving transformations of the subgrid-scale (SGS) stress tensor is exploited here to explore alternative representations of the local SGS energy fluxes. Numerical optimisation procedures are applied to the SGS stress tensor – obtained by filtering isotropic turbulence flow fields – to find alternative stresses that satisfy the filtered Navier–Stokes equations, but that produce negligible backscatter. These alternative SGS stresses show that backscatter represents not a flux of energy from the subgrid to the resolved scales, but conservative spatial fluxes, and that it need not be modelled to reproduce the local energetic exchange between the resolved and the subgrid scales in LES. From the perspective of statistical mechanics, it is argued that this is a consequence of the strong statistical irreversibility of inertial-range dynamics, which precludes inverse energy cascades even in a local sense. These findings show that the energy cascade is strongly unidirectional locally, and that it can be modelled as an irreversible sink of energy, justifying the extended use of purely dissipative SGS models in LES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.