Abstract

The demand for more efficient heavy-haul rail networks over soft subgrades poses significant geotechnical challenges and requires a comprehensive understanding of stress conditions as well as the failure potential of subgrade soil under moving wheel loads and increasing rail speeds. Unfavourable stress conditions in the subgrade can result in various types of failures, three of which are identified in this article: (i) excessive plastic settlement, (ii) progressive shear failure, and (iii) subgrade fluidisation (mud pumping). Through a series of advanced testing schemes using cyclic triaxial, hollow cylinder, and an in-house dynamic filtration apparatus, critical stress conditions and soil characteristics prone to subgrade instability are discussed. The results demonstrate that under adverse combinations of loading frequency (f) and cyclic stress ratio (CSR) the continuous application of cyclic loads can lead to an unstable state of soil where excess pore pressure and axial strain increase rapidly. This study also reveals that low to medium plasticity soils (PI < 22) are more vulnerable to subgrade fluidisation, where the rapid internal migration of pore water transforms the upper soil to a fluid-like state with substantial loss in soil stiffness. The layered response of soil through dynamic filtration tests showed larger hydrodynamic forces induced by differential hydraulic gradients in the top layer during cyclic loading causes moisture to move upwards. Various factors that can influence soil instability such as the degree of compaction degree, clay content, soil fabric and stress rotation are also addressed in this paper. Finally, novel solutions for stabilising subgrade such as a vertical drain-composite system and the use of eco-friendly biopolymers are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call