Abstract

Let {(X n ,J n )} be a stationary Markov-modulated random walk on ℝ x E (E is finite), defined by its probability transition matrix measure F = {F ij }, F ij (B) = ℙ[X 1 ∈ B, J 1 = j | J 0 = i], B ∈ B (ℝ), i, j ∈ E. If F ij ([x,∞))/(1-H(x)) → W ij ∈ [0,∞), as x → ∞, for some long-tailed distribution function H, then the ascending ladder heights matrix distribution G +(x) (right Wiener-Hopf factor) has long-tailed asymptotics. If 𝔼X n < 0, at least one W ij > 0, and H(x) is a subexponential distribution function, then the asymptotic behavior of the supremum of this random walk is the same as in the i.i.d. case, and it is given by ℙ[sup n≥0 S n > x] → (−𝔼X n )−1 ∫ x ∞ ℙ[X n > u]du as x → ∞, where S n = ∑1 n X k , S 0 = 0. Two general queueing applications of this result are given. First, if the same asymptotic conditions are imposed on a Markov-modulated G/G/1 queue, then the waiting time distribution has the same asymptotics as the waiting time distribution of a GI/GI/1 queue, i.e., it is given by the integrated tail of the service time distribution function divided by the negative drift of the queue increment process. Second, the autocorrelation function of a class of processes constructed by embedding a Markov chain into a subexponential renewal process, has a subexponential tail. When a fluid flow queue is fed by these processes, the queue-length distribution is asymptotically proportional to its autocorrelation function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call