Abstract

Abstract Let $\mathcal{V}$ and $\mathcal{U}$ be the point sets of two independent homogeneous Poisson processes on $\mathbb{R}^d$ . A graph $\mathcal{G}_\mathcal{V}$ with vertex set $\mathcal{V}$ is constructed by first connecting pairs of points (v, u) with $v\in\mathcal{V}$ and $u\in\mathcal{U}$ independently with probability $g(v-u)$ , where g is a non-increasing radial function, and then connecting two points $v_1,v_2\in\mathcal{V}$ if and only if they have a joint neighbor $u\in\mathcal{U}$ . This gives rise to a random intersection graph on $\mathbb{R}^d$ . Local properties of the graph, including the degree distribution, are investigated and quantified in terms of the intensities of the underlying Poisson processes and the function g. Furthermore, the percolation properties of the graph are characterized and shown to differ depending on whether g has bounded or unbounded support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.