Abstract

Isolated Microspore Culture (IMC) is an efficient method to obtain the homozygous strain; however, it is difficult to apply in ornamental kale due to its low rate of microspore embryogenesis. Histone acetylation is an important epigenetic mechanism and may affect the changes of the microspore development pathway, promoting microspore embryogenesis. Here, microspores from three cut-flower ornamental kales, namely Crane Feather Queen (CFQ), Crane Pink (CP), and Crane Bicolor (CB), were treated with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) to induce embryogenesis. The haploid 'CFQ' microspore plantlets were doubled with colchicine. The results for 'CFQ' revealed that, the appropriate concentration of SAHA was 0.03μM and obtained 17.27 embryos per bud. For 'CP,' the appropriate concentration of SAHA was 0.045μM and obtained 11.19 embryos per bud. For 'CB,' the appropriate concentration of SAHA was 0.045μM and obtained 6.10 embryos per bud. Haploid 'CFQ' microspore plantlets were treated with 75mg/L colchicine for 7 d and the doubling rate was 41.7%. Haploid 'CFQ' plantlets were treated with 1000mg/L colchicine by root-soaking for 4h and the doubling rate was 64.3%. SAHA could promote microspore embryogenesis, and colchicine root soaking was more effective than adding colchicine to the medium for haploid plantlet doubling in cut-flower ornamental kale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.