Abstract
For a set-valued mappingMdefined between two Hausdorff topological vector spacesEandFand with closed convex graph and for a given point(x,y)∈E×F, we study the minimal time function associated with the images ofMand a bounded setΩ⊂Fdefined by𝒯M,Ω(x,y):=inf{t≥0:M(x)∩(y+tΩ)≠∅}. We prove and extend various properties on directional derivatives and subdifferentials of𝒯M,Ωat those points of(x,y)∈E×F(both cases: points in the graphgph Mand points outside the graph). These results are used to prove, in terms of the minimal time function, various new characterizations of the convex tangent cone and the convex normal cone to the graph ofMat points insidegph Mand to the graph of the enlargement set-valued mapping at points outsidegph M. Our results extend many existing results, from Banach spaces and normed vector spaces to Hausdorff topological vector spaces (Bounkhel, 2012; Bounkhel and Thibault, 2002; Burke et al., 1992; He and Ng, 2006; and Jiang and He 2009). An application of the minimal time function𝒯M,Ωto the calmness property of perturbed optimization problems in Hausdorff topological vector spaces is given in the last section of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.