Abstract
We study ergodic finite and infinite measures defined on the path space $X_{B}$ of a Bratteli diagram $B$ which are invariant with respect to the tail equivalence relation on $X_{B}$. Our interest is focused on measures supported by vertex and edge subdiagrams of $B$. We give several criteria when a finite invariant measure defined on the path space of a subdiagram of $B$ extends to a finite invariant measure on $B$. Given a finite ergodic measure on a Bratteli diagram $B$ and a subdiagram $B^{\prime }$ of $B$, we find the necessary and sufficient conditions under which the measure of the path space $X_{B^{\prime }}$ of $B^{\prime }$ is positive. For a class of Bratteli diagrams of finite rank, we determine when they have maximal possible number of ergodic invariant measures. The case of diagrams of rank two is completely studied. We also include an example which explicitly illustrates the proven results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.