Abstract

The formation of La0.6Sr0.4CoO3-δ (LSC) nanoparticles on cathode surfaces enhances the charge conductivity, thus enabling high performance in solid oxide fuel cells. However, the 0D structure has limitations such as inefficient charge conducting paths and fading of reaction sites due to the excessive loading level needed to ensure continuity of the nanoparticles. In this study, we report a uniformly grown ultrathin 2D La0.6Sr0.4CoO3-δ nanosheet that can be used to enhance cathode performance. The continuous 2D form more efficiently enlarges the reaction site and has a low loading level compared to the conventional 0D form. The 2D nanosheet structure is ideal for enlarging the charge conducting path because it shows favorable networking within the cathode scaffold compared to other structures. A solid oxide fuel cell using a 2D La0.6Sr0.4CoO3-δ nanosheet exhibits an enhanced power density of 1.2 W cm−2 at 600 °C. This improvement occurs because the nanosheet facilitates charge conducting within the cathode. Our strategy provides a method to build high-performance solid oxide fuel cells using a cathode structure design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.