Abstract

Noninfective uveitis is a major cause of vision impairment, and corticosteroid medication is a mainstay clinical strategy that causes severe side effects. Rapamycin (RAPA), a potent immunomodulator, is a promising treatment for noninfective uveitis. However, because high and frequent dosages are required, it is a great challenge to implement its clinical translation for noninfective uveitis therapy owing to its serious toxicity. In the present study, we engineered an injectable microparticulate drug delivery system based on biodegradable block polymers (i.e., polycaprolactone-poly (ethylene glycol)-polycaprolactone, PCEC) for efficient ocular delivery of RAPA via a subconjunctival injection route and investigated its therapeutic efficacy in an experimental autoimmune uveitis (EAU) rat model. RAPA-PCEC microparticles were fabricated using the emulsion-evaporation method and thoroughly characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The formed microparticles exhibited slow in vitro degradation over 28 days, and provided both in vitro and in vivo sustained release of RAPA over 4 weeks. Additionally, a single subconjunctival injection of PCEC microparticles resulted in high ocular tolerance. More importantly, subconjunctival injection of RAPA-PCEC microparticles significantly attenuated the clinical signs of EAU in a dose-dependent manner by reducing inflammatory cell infiltration (i.e., CD45+ cells and Th17 cells) and inhibiting microglial activation. Overall, these injectable microparticulate systems may be promising vehicles for intraocular delivery of RAPA for the treatment of noninfective uveitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call